ISOTOPE EFFECTS OF ^{34/32}S AND ^{37/35}CI ON THE NUCLEAR SHIELDING OF FLUORINE-19 AND THEIR CORRELATION WITH BOND LENGTHS

W. Gombler

Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, D-4630 Bochum (F.R.G.)

The isotope effect of ^{34/32}S on the NMR frequency of ¹⁹F has been measured for a series of sulfur fluorine compounds. The one-bond low-frequency (high-field) isotope shift $\frac{1}{10}$ $\frac{19}{10}$ $\frac{34}{32}$ S) shows a strong inverse dependence on the S-F bond distance. For example, the axial F atoms of the longer S-F bond in SF_A and its derivatives give much smaller values than the equatorial ones which form a shorter S-F bond. From this correlation S-F bond distances of similar sulfur fluorine compounds can be predicted. The two-bond isotope shifts $^2\Delta^{19}F(^{34/32}S)$ in compounds of type F_3CS - and S=C(F)X depend analogously on the C-S bond distance (the C-F bond length is almost constant). Together with the correlations between the isotope effects $^{1}_{\Lambda}$ 77 Se($^{13/12}$ C)[1] and $\frac{1}{\Lambda}$ ³¹P($\frac{15/14}{N}$) [2], respectively, and the corresponding bond lengths, it appears that the dependence of isotope shifts on bond distances is a general phenomenon that can be applied to a series of closely related compounds.

The two-bond isotope effect $^{\bar{2}}_{\Delta}^{19}F(^{37/35}_{Cl})$ shows that the influence of two $^{37}_{Cl}$ atoms on the $^{19}_{F}$ shielding is additive and the number of Cl atoms in a group can be determined from the isotope pattern of the highly resolved spectrum.

- 1 W. Gombler, J. Am. Chem. Soc. 104, 6616 (1982).
- 2 W. Gombler, R. W. Kinas and W. J. Stec, Z. Naturforsch. Part B, in press.